If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9-49z^2=0
a = -49; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-49)·9
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*-49}=\frac{-42}{-98} =3/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*-49}=\frac{42}{-98} =-3/7 $
| 2(2y+7)=47 | | 6(−2g−1)=−1(13g+2) | | 36=4w+2w | | i/5+9=3 | | 5q-5=25 | | 4/6x=5/2x+10 | | 2(x-3)-3(x-2)=12 | | 8w=91-5w | | 35=11v-4v | | 3x=32-42 | | 12+6q=48 | | 90=2u-32 | | 3(f+13)=84 | | 34=20/b+32 | | 97=26q-33 | | 2x=x+130 | | 30+s/14=35 | | 30+s14=35 | | 59+100/u=79 | | 9r+6=42 | | 25c^2+15c=0 | | 64=48+16z | | s/6+16=20 | | 1=8j-31 | | 5-7+5y=9 | | 9j-27=27 | | 16=r/3+6 | | 66=k/8+56 | | (x+4)^2+(9-2)^2=144 | | 54=44+g/10 | | 9·(x-3)-6x=-24x | | g/2+7=10 |